Un nuevo estudio publicado por Zhang D, Chen D, Cao L, Li G, Cheng H ( Febrero 2016) The Effect of Codon Mismatch on the Protein Translation System. PLoS ONE 11(2): e0148302. doi:10.1371/journal.pone.0148302, pone de relieve los desajustes en la transacción de proteínas como un problema para la configuración neuronal.
El estudio muestra cómo los desordenes y desajustes en la transacción de proteínas afectan a la correcta distribución de las proteínas que se sintetizan en los tejidos celulares.
De acuerdo con los resultados de la simulación, el estudio demuestra que los desajustes en la transacción de proteínas en el codón, se incrementa cuando se producen cuando el ajuste de aminoacidos se encuentra en situación de desbalance. Esta situación afectaría al transporte del RNA, que se traduciría a una incorrecta distribución en la configuración celular.
Pueden descargar el informe completo en :
Otras referencias sobre la materia:
1. Li GW, Oh E, Weissman JS. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature. 2012; 484: 538–541. doi: 10.1038/nature10965. pmid:22456704
- 2. Weygand-Durasevic I, Ibba M. New Roles for Codon Usage. Science. 2010; 329: 1473–1474. doi: 10.1126/science.1195567. pmid:20847254
- 3. Cannarozzi G, Schraudolph NN, Faty M, von Rohr P, Friberg MT, Roth AC, et al. A role for codon order in translation dynamics. Cell. 2010; 141: 355–367. doi: 10.1016/j.cell.2010.02.036. pmid:20403329
- 4. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, et al. Deciphering the splicing code. Nature. 2010; 465: 53–59. doi: 10.1038/nature09000. pmid:20445623
- 5. Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol. 2011; 7: 481. doi: 10.1038/msb.2011.14. pmid:21487400
- 6. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 2010; 141: 344–354. doi: 10.1016/j.cell.2010.03.031. pmid:20403328
- 7. Novoa EM, Ribas de Pouplana L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 2012; 28: 574–581. doi: 10.1016/j.tig.2012.07.006. pmid:22921354
- 8. Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008; 42: 287–299. doi: 10.1146/annurev.genet.42.110807.091442. pmid:18983258
- 9. Tuller T, Waldman YY, Kupiec M, Ruppin E. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A. 2010; 107: 3645–3650. doi: 10.1073/pnas.0909910107. pmid:20133581
- 10. Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005; 361: 13–37. pmid:16213112 doi: 10.1016/j.gene.2005.06.037
- 11. Robbins-Pianka A, Rice MD, Weir MP. The mRNA landscape at yeast translation initiation sites. Bioinformatics. 2010; 26: 2651–2655. doi: 10.1093/bioinformatics/btq509. pmid:20819958
- 12. Gu W, Zhou T, Wilke CO. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol. 2010; 6: e1000664. doi: 10.1371/journal.pcbi.1000664. pmid:20140241
- 13. Eyrewalker A, Bulmer M. Reduced Synonymous Substitution Rate at the Start of Enterobacterial Genes. Nucleic Acids Research. 1993; 21: 4599–4603. pmid:8233796 doi: 10.1093/nar/21.19.4599
- 14. Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. Rate-Limiting Steps in Yeast Protein Translation. Cell. 2013; 153: 1589–1601. doi: 10.1016/j.cell.2013.05.049. pmid:23791185
- 15. Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009; 324: 255–258. doi: 10.1126/science.1170160. pmid:19359587
- 16. Goodman DB, Church GM, Kosuri S. Causes and Effects of N-Terminal Codon Bias in Bacterial Genes. Science. 2013; 342: 475–479. doi: 10.1126/science.1241934. pmid:24072823
- 17. Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990; 87: 8301–8305. pmid:2236042 doi: 10.1073/pnas.87.21.8301
- 18. Tuller T, Veksler-Lublinsky I, Gazit N, Kupiec M, Ruppin E, Ziv-Ukelson M. Composite effects of gene determinants on the translation speed and density of ribosomes. Genome Biology. 2011; 12: doi: 10.1186/gb-2011-12-11-r110
- 19. Zur H, Tuller T. New Universal Rules of Eukaryotic Translation Initiation Fidelity. Plos Computational Biology. 2013; 9: doi: 10.1371/journal.pcbi.1003136
- 20. Kochetov AV, Palyanov A, Titov II, Grigorovich D, Sarai A, Kolchanov NA. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinformatics. 2007; 8: 318. pmid:17760957 doi: 10.1186/1471-2105-8-318
- 21. Fredrick K, Ibba M. How the sequence of a gene can tune its translation. Cell. 2010; 141: 227–229. doi: 10.1016/j.cell.2010.03.033. pmid:20403320
- 22. Pechmann S, Frydman J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol. 2013; 20: 237–243. doi: 10.1038/nsmb.2466. pmid:23262490
- 23. Dana A, Tuller T. Properties and determinants of codon decoding time distributions. BMC Genomics. 2014; 15 Suppl 6: S13. doi: 10.1186/1471-2164-15-S6-S13. pmid:25572668
- 24. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science. 2009; 324: 218–223. doi: 10.1126/science.1168978. pmid:19213877
- 25. Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T. Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model. Plos Computational Biology. 2011; 7: doi: 10.1371/journal.pcbi.1002127
- 26. Harley CB, Pollard JW, Stanners CP, Goldstein S. Model for Messenger-Rna Translation during Amino-Acid Starvation Applied to the Calculation of Protein Synthetic Error Rates. Journal of Biological Chemistry. 1981; 256: 786–794.
- 27. Fluitt A, Pienaar E, Vijoen H. Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Computational Biology and Chemistry. 2007; 31: 335–346. pmid:17897886 doi: 10.1016/j.compbiolchem.2007.07.003
- 28. Zaher HS, Green R. Quality control by the ribosome following peptide bond formation. Nature. 2009; 457: 161–U151. doi: 10.1038/nature07582. pmid:19092806
- 29. Hausmann CD, Praetorius-Ibba M, Ibba M. An aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation. Nucleic Acids Research. 2007; 35: 6094–6102. pmid:17766929 doi: 10.1093/nar/gkm534
- 30. Cathopoulis TJT, Chuawong P, Hendrickson TL. Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs. Biochemistry. 2008; 47: 7610–7616. doi: 10.1021/bi800369q. pmid:18627126
- 31. Becker HD, Kern D. Thermus thermophilus: A link in evolution of the tRNA-dependent amino acid amidation pathways. Proceedings of the National Academy of Sciences of the United States of America. 1998; 95: 12832–12837. pmid:9789000 doi: 10.1073/pnas.95.22.12832
- 32. Schrader JM, Chapman SJ, Uhlenbeck OC. Understanding the Sequence Specificity of tRNA Binding to Elongation Factor Tu using tRNA Mutagenesis. Journal of Molecular Biology. 2009; 386: 1255–1264. pmid:19452597 doi: 10.1016/j.jmb.2009.01.021
- 33. Shen PS, Park J, Qin YD, Li XM, Parsawar K, Larson MH, et al. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science. 2015; 347: 75–78. doi: 10.1126/science.1259724. pmid:25554787
- 34. Piques M, Schulze WX, Hohne M, Usadel B, Gibon Y, Rohwer J, et al. Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Molecular Systems Biology. 2009; 5: doi: 10.1038/msb.2009.68
- 35. Waldron C, Lacroute F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol. 1975; 122: 855–865. pmid:1097403
- 36. Karpinets TV, Greenwood DJ, Sams CE, Ammons JT. RNA: protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. Bmc Biology. 2006; 4:
- 37. Williams CW, Elmendorf HG. Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach. Bmc Genomics. 2011; 12: doi: 10.1186/1471-2164-12-586
- 38. Soudet J, Gelugne JP, Belhabich-Baumas K, Caizergues-Ferrer M, Mougin A. Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. Embo Journal. 2010; 29: 80–92. doi: 10.1038/emboj.2009.307. pmid:19893492
- 39. Fujii K, Kitabatake M, Sakata T, Miyata A, Ohno M. A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes & Development. 2009; 23: 963–974. doi: 10.1101/gad.1775609
- 40. Dever TE, Green R. The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology. 2012; 4: doi: 10.1101/cshperspect.a013706
- 41. Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Structural & Molecular Biology. 2004; 11: 1101–1106. doi: 10.1038/nsmb841
- 42. Hernandez G. Was the initiation of translation in early eukaryotes IRES-driven? Trends in Biochemical Sciences. 2008; 33: 58–64. doi: 10.1016/j.tibs.2007.11.002. pmid:18242094
- 43. Qian WF, Yang JR, Pearson NM, Maclean C, Zhang JZ. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency. Plos Genetics. 2012; 8: doi: 10.1371/journal.pgen.1002603
- 44. Garcia-Martinez J, Aranda A, Perez-Ortin JE. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Molecular Cell. 2004; 15: 303–313. pmid:15260981 doi: 10.1016/j.molcel.2004.06.004
- 45. Reid DW, Nicchitta CV. Primary Role for Endoplasmic Reticulum-bound Ribosomes in Cellular Translation Identified by Ribosome Profiling. Journal of Biological Chemistry. 2012; 287: 5518–5527. doi: 10.1074/jbc.M111.312280. pmid:22199352
- 46. Hofmann K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair. 2009; 8: 544–556. doi: 10.1016/j.dnarep.2009.01.003. pmid:19213613
- 47. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes. Annual Review of Biochemistry. 2009; 78: 363–397. doi: 10.1146/annurev.biochem.78.082307.091526. pmid:19489724
- 48. Effraim PR, Wang JN, Englander MT, Avins J, Leyh TS, Gonzalez RL, et al. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nature Chemical Biology. 2009; 5: 947–953. doi: 10.1038/nchembio.255. pmid:19915542
Debe estar conectado para enviar un comentario.